A visual representation of SQL Server Agent jobs

If all you have is a hammer, everything will eventually start looking like a nail. This is generally known as Maslow’s hammer and refers to the fact that you use the tools you know to solve any problem, regardless if that’s what the problem actually needs. With that said, I frequently need a way to visualize the load distribution of scheduled jobs over a day or week, but I could never be bothered to set up a web server, learn a procedural programming language or build custom visualizations in PowerBI.

So here’s how to do that without leaving Management Studio.

Human-readable ranges of integers or dates

This is a real-world problem that I came across the other day. In a reporting scenario, I wanted to output a number of values in an easy, human-readable way for a report. But just making a long, comma-separated string of numbers doesn’t really make it very readable. This is particularly true when there are hundreds of values.

So here’s a powerful pattern to solve that task.

Comparing nullable columns

Do you ever compare the values of a lot of columns in two tables? Sure you do. Like, for instance, in a cross update, when you need to figure out which rows you should actually update. But it gets worse if the columns are nullable. The fact that any value could potentially be NULL vastly complicates the comparison and might wreak havoc not only on your code but also on your query performance.

But there’s hope.

Key Lookup without an output column?

Performance tuning the other day, I was stumped by a query plan I was looking at. Even though I had constructed a covering index, I was still getting a Key Lookup operator in my query plan. What I usually do when that happens is to check the operator’s properties to see what its output columns are, so I can include those columns in my covering index.

Here’s the interesting thing: there weren’t any output columns. What happened?

Selectively disable “Include actual execution plan”

The “include actual execution plan” feature in SQL Server Management Studio is an invaluable tool for performance tuning. It returns the actual execution plan used for each statement, including actual row counts, tempdb spills and a lot of other information you need to do performance tuning.

But sometimes you want to run a series of statements or procedures where you only want the execution plan for some of the statements. Here’s how:

Calculating the number of weekdays between two dates

I wish the DATEDIFF() function would count the number of working days (mondays through fridays) between two dates for me, but until that happens, I’ve had to roll my own scalar function. I tried to think of a smart way involving perhaps a modulus calculation, but I quickly succumbed to a more down-to-earth approach.

Windowed DISTINCT aggregates

You may have discovered that the use of DISTINCT is not supported in windowed functions. A query that uses a distinct aggregate in a windowed function,

SELECT COUNT(DISTINCT something) OVER (PARTITION BY other)
FROM somewhere;

will generate the following error message:

Msg 10759, Level 15, State 1, Line 1
Use of DISTINCT is not allowed with the OVER clause.

There are, however, a few relatively simple workarounds that are suprisingly efficient.

Last row per group

A very common challenge in T-SQL development is filtering a result so it only shows the last row in each group (partition, in this context). Typically, you’ll see these types of queries for SCD 2 dimension tables, where you only want the most recent version for each dimension member. With the introduction of windowed functions in SQL Server, there are a number of ways to do this, and you’ll see that performance can vary considerably.