Watch out for Merge Interval with date range Index Seeks

In my last post, I found that DATEDIFF, DATEADD and the other date functions in SQL Server are not as datatype agnostic as the documentation would have you believe. Those functions would perform an implicit datatype conversion to either datetimeoffset or datetime (!), which would noticeably affect the CPU time of a query.

Well, today I was building a query on an indexed date range, and the execution plan contained a Merge Interval operator. Turns out, this operator brings a few unexpected surprises to your query performance. The good news is, it’s a relatively simple fix.

Different query plans for “OR” type queries

The SQL Server query optimizer can find interesting ways to tackle seemingly simple operations that can be hard to optimize. Consider the following query on a table with two indexes, one on (a), the other on (b):

SELECT a, b
FROM #data
WHERE a<=10 OR b<=10000;

The basic problem is that we would really want to use both indexes in a single query.

In this post, we’re going to take a look at a few examples of how this type of query would be optimized, as well as how statistics can affect the query plan, and finally, we’ll take a look at a slightly rare plan operator called “Merge Join (Concatenation)”.

Indexing basics

Understanding indexes in SQL Server can help you build much more efficient database solutions. Often, performance problems can be adressed with indexes, so knowing how indexes work and how to set them up for the best performance are a great asset in your optimization work.